Working memory

PSY 200
Greg Francis
Lecture 15

Why there is a gate at the first floor stairway in the Psych building.

Modal Model of Memory

- Atkinson & Shiffrin (1968)
- Today we focus on the Short-term store (Short term memory)

Search of memory

- How is memory searched?
 - Sternberg hypothesized three types of searches
 - Explore by varying the number of items in memory set (similar to visual search experiments)
 - measure reaction time
 - Sternberg (1969)

Types of searches

- (1) parallel: target item is compared to all the items in memory at the same time
 - the answer (yes or no) is returned after all items have been checked

Types of searches

- (1) parallel: target item is compared to all the items in memory at the same time
 - the answer (yes or no) is returned after all items have been checked

Memory search

- If parallel search
 - number of items does not matter
 - Yes and No responses are both flat
Types of searches

● (2) serial terminating: target item is compared to each item one after the other
 • the answer (yes or no) is returned after the target is found or all items are searched
 • Reaction time is faster for a yes response

If self-terminating search

● Go through items one-by-one until find target
● RT increases with set size
 • YES RT’s shorter than NO RT’s
● Lines have different slopes

Types of searches

● (3) serial exhaustive: target item is compared to each item one after the other
 • the answer (yes or no) is returned after all items are searched (regardless of whether target is found or not)
 • Lines are parallel

If exhaustive search

● Go through every item and then report answer
● RT’s increases with set size
 • YES RT increases the same as NO RT’s
● Lines are parallel
Hypothetical searches

- So, we have three hypothetical ways of searching STM
 - They predict very different patterns of reaction time as a function of memory set size
 - Sternberg runs the experiment to see how the data comes out
 - You ran a version of the experiment in CogLab

Search of memory

- Sternberg’s data support exhaustive search
 - Here’s the CogLab data (160 participants)
 - Yes
 - No

Implications: Search of STM

- 1) is serial, one item at a time
 - and checking each item takes approximately the same length of time
 - Approximately 40 milliseconds (CogLab data is a bit slower, 68 milliseconds)
- 2) is exhaustive
 - search always goes through all items

Search of memory

- These results were a bombshell in 1969
 - finer analysis of cognition than anyone expected was possible
 - used a thought experiment about different types of searches to generate precise testable predictions about cognition
 - subsequent research found that there were other types of searches that complicate the conclusions
 - counter-intuitive finding
 - why should search be exhaustive?
 - seems inefficient!

Interpretation

- Exhaustive search makes sense if search of STM is done by some process that is
 - very efficient (can search very quickly)
 - dumb (doesn’t bother to stop itself)
 - initiated by some other system (a controller)

Controller

- Controlling attentional system
 - supervises
 - coordinates
 - starts and stops relatively independent processes
 - e.g.
 - Search short term memory
 - Search long term memory
 - walking down stairs
 - gate in psychological sciences building
 - Doors
Other aspects of STM
- At about the same time, another study indicated important characteristics of phonological and visuo-spatial systems
- Brooks (1968)
 - two types of tasks (visuo-spatial and phonological)
 - two types of responses (visuo-spatial and phonological)
- Identifies two types of systems that are relatively separate

Separate systems
- A complicated experiment
 - Part 1: spatial mental task (diagrams)
 - visual imagery
 - classify corners (top or bottom corner?)
 - “yes” if top or bottom
 - “no” if not top or bottom
 - Part 2: verbal mental task
 - read sentence
 - categorize words (noun or not?)

Separate systems
- Part 2: verbal mental task
 - read sentence
 - categorize words (noun or not?)

Two response types
- Either
 - verbally
 - spatially

Results
- Measure time to finish mental task for each response type
 - diagrams — pointing
 - sentence — pointing
 - diagrams — verbal
 - sentence — verbal

Results
- when you have to respond by pointing, it is easier to work with sentence information than diagram information
- when you have to respond verbally, it is easier to work with diagram information than sentence information

<table>
<thead>
<tr>
<th>Mental task</th>
<th>Pointing</th>
<th>Sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagrams</td>
<td>28.2s</td>
<td>9.8s</td>
</tr>
<tr>
<td>Verbal</td>
<td>11.3s</td>
<td>13.8s</td>
</tr>
</tbody>
</table>
Significance

- The results suggest that there are two relatively separate systems
 - one deals with visuo-spatial information and must do the pointing response and mental diagram task
 - one deals with verbal information and must do the spoken response and the sentence task

Interference

- These systems have only limited resources and capabilities
 - Asking a system to do two things at once (e.g., pointing and mental diagram) slows down the system
 - Splitting responsibilities across the systems (e.g., spoken response and mental diagram) can be done quickly

All together now

- Sternberg’s study suggests the existence of a “controller” that tells other systems what to do
- Brook’s study suggests separate systems that deal specifically with visuo-spatial and verbal information, respectively
- Baddley (1986) put these ideas together into a model of working memory

Working memory

- Current thought, awareness
 - extension of short-term memory
 - small capacity
 - rapid forgetting
- Processor of information
 - not a storage device
 - hypothesizes mechanisms that lead to memory properties

Conclusions

- Sternberg’s study
 - controller system
- Brook’s study
 - separate visual and verbal systems
- Baddley’s working memory model
 - Central executive
 - Visuo-spatial sketchpad
 - Phonological loop

Next time

- Properties of phonological loop
- Data
 - phonological similarity effect
 - articulatory suppression
 - word length effect
 - irrelevant speech effect
- CogLabs on Memory span and Phonological similarity due!
- A problem with IQ tests.